3D Medical Image Processing Laboratory

Factor Analysis in Nuclear Medicine - Useful but Dangerous

Introduction

- What is the factor analysis and where can it be applied
- Part I
 - Why dangerous
- Part II
 - Why useful

Goal

Familiarize

Caution

Interest

Dynamic Imaging

4 Dimensions

Dynamic Imaging

Series of 3D-images each taken at a different time

 Differential uptake of pharmaceutical can be obtained

Factor Analysis in Dynamic Imaging

Series of 3D-images each taken at a different time

A method of obtaining of the differential time uptake for a given organ or a region in 3D image

 Differential time uptake of pharmaceutical can be obtained

Examples of Dynamic Imaging

Planar Single Photon
 99mTc-MAG3 for estimating kidney GFR (2Dimensions)

SPECT

²⁰¹TI, ^{99m}TC-Teboroxime for heart perfusion

PET

¹⁵O-Water for brain activation study

PET

¹¹C-Raclopride ¹⁸F-DMFP for dopamine studies in a brain

PET

¹³N-Ammonia, ⁸²Ru, ¹⁸F-FDG, ¹⁸F-fatty acids for cardiac studies

- Planar
 - 2D images
 - Stationary detector

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- FAST SPECT
 - Fast rotation
 - Usually done with 3 detector camera

- •Each 120º rotation gives one 3D image
- •The best time resolution of such system: about 10 seconds

- SLOW SPECT
 - Slow rotation
 - Inconsistent projections

- •Detectors during this projection see different activity than during this one
- •Standard reconstruction of such inconsistent data will FAIL

SLOW SPECT

- Slow rotation
- Inconsistent projections
- Special reconstruction techniques have to be used to deal with the inconsistency in the Slow SPECT acquired dynamic data
- Factor analysis can be used (Sitek at al JNM 2001)

PET

Dynamic PET

"... and sometimes I dream about inherent dynamic PET acquisitions..."

taken from "My Life as a Nuclear Medicine Physicist"

PET

- Projections are consistent -ALWAYS
- Theoretically any time resolution is possible

Presentation Gauge*

^{*-} any correlation with the time of the presentation should not be assumed

Terminology

Factor Analysis = Factor Analysis of Dynamic Structures (FADS)

Time Activity Curve (TAC)

- Factor model assumes that in the image there are groups of pixels that have the same time behavior
- Examples: Liver, heart, heart defect etc.

- Factor Analysis finds groups of pixels that have a similar time uptake, and also determines the corresponding TAC
- Number of groups is predetermined (usually up to 4)

A factor is the TAC that corresponds to a group

A factor coefficient image is a spatial definition of a group

Image from dynamic sequence acquired at time t

Image of factor

= coefficients for first
factor times value of
that factor for time t

Image of factor

+ coefficients for
second factor times
value of that factor
for time t

$$\mathbf{I}(t) = \mathbf{C}_1 F_1(t) + \mathbf{C}_2 F_2(t) + \dots$$

$$\mathbf{I} = \mathbf{C} * \mathbf{F}$$

Dynamic sequence = Factor coefficients * Factor
$$N$$
 \mathbf{I} = N $\mathbf{C} * \mathbf{F} K \stackrel{M}{\sqsubseteq}$

- N Number of pixels in each dynamic image (128x128x30)
- M Number of dynamic images (100)
- *K* Number of factors (4)

$$\mathbf{I} = \mathbf{C} * \mathbf{F}$$

The goal of performing FADS is to obtain matrix **C** and matrix **F** having as input matrix **I**

Reminder:

Matrix C corresponds to image of the organs with similar uptake (in cardiac imaging it could be heart tissue, left or right blood pool, liver...)

Matrix F corresponds to time behavior of those regions

 $\mathbf{I} = \mathbf{C} * \mathbf{F}$

Is it hard to get C and F using above equation? Not really

Reminder:

Matrix C corresponds to image of the organs with similar uptake (in cardiac imaging it could be heart tissue, left or right blood pool, liver...)

Matrix F corresponds to time behavior of those regions

Factor Analysis $I = \mathbb{C} * \mathbb{F}$

The most popular methods of solving the above is the apex seeking method by *Di Paola et al IEEE TNS* 1980 + *Variations on a Theme..*

Reminder:

Matrix C corresponds to image of the organs with similar uptake (in cardiac imaging it could be heart tissue, left or right blood pool, liver...)

Matrix F corresponds to time behavior of those regions

Factor Analysis $I = \mathbb{C} * \mathbf{F}$

Dangerous Point: The solution that come out of these (apex seeking) methods is mathematically not unique if only nonnegativity constraints are used

Reminder:

Matrix C corresponds to image of the organs with similar uptake (in cardiac imaging it could be heart tissue, left or right blood pool, liver...)

Matrix F corresponds to time behavior of those regions

Presentation Gauge*

^{*-} any correlation with the time of the presentation should not be assumed

Demonstration of the non-uniqueness for 2 factor model. Matrices C_1, C_2, F_1, F_2 are non-negative

$$I = C_1 F_1 + C_2 F_2 (1)$$

$$I = C_1 F_1 + C_2 F_2 + aC_1 F_2 - aC_1 F_2$$
 (2)

$$I = C_1(F_1 - aF_2) + (C_2 + aC_1)F_2$$
 (3)

$$I = C_1 F'_1 + C'_2 F_2 (4)$$

Matrices $C_1, C'_2 = C_2 + aC_1, F'_1 = F_1 - aF_2, F_2$ are equally good as long as non-negative

Factor Analysis

I = C*F

In all examples that will be presented factor analysis based on least squares (Sitek *at al PMB* 2000, *IEEE TMI* 2002) will be used for solving the above

Reminder:

Matrix C corresponds to image of the organs with similar uptake (in cardiac imaging it could be heart tissue, left or right blood pool, liver...)

Matrix F corresponds to time behavior of those regions

Matrix I is the measured dynamic sequence

Factor Analysis

LS-FADS method minimizes the difference between the model and the data with non-negativity constraints (results similar to the apex-seeking)

•PLS-FADS method minimizes the difference between the model and the data with the non-negativity constraints and with the correction for non-uniqueness

Presentation Gauge*

^{*-} any correlation with the time of the presentation should not be assumed

RV LV

Tissue

Cardiac canine

99mTc-Teboroxime

LS-FADS

PLS-FADS

IMAGING PROTOCOL

FAST SPECT 179 image dynamic series. Images taken every 7 seconds at rest and stress

Factor Analysis

Demonstration of the non-uniqueness for 2 factor model. Matrices C_1, C_2, F_1, F_2 are non-negative

$$I = C_1 F_1 + C_2 F_2$$

$$I = C_1 F_1 + C_2 F_2 + aC_1 F_2 - aC_1 F_2$$

$$I = C_1 (F_1 - aF_2) + (C_2 + aC_1) F_2$$

$$I = C_1 F_1' + C_2' F_2$$

Matrices $C_1, C'_2 = C_2 + aC_1, F'_1 = F_1 - aF_2, F_2$ are equally good as long as non-negative

RV LV Tissue

Cardiac canine

99mTc-Teboroxime

LS-FADS

PLS-FADS

Decreased contrast

RV

Cardiac canine
99mTc-Teboroxime

LV

Tissue

Cardiac canine

99mTc-Teboroxime

Tissue

RV

LV

Tissue

Kidney

99mTc-MAG3

Cortex Background Ureter

LS-FADS

PLS-FADS

IMAGING PROTOCOL

Planar - 300 image dynamic series. Images taken every 5 seconds.

LS-FADS PLS-FADS

Patient kidney

99mTc-MAG3

Cortex

Background

Ureter

- •With no non-uniqueness correction 2-3 factors
- •If the non-uniqueness is properly addressed even 4 factor-FADS works! Wow!

Patient cardiac

99mTc-Teboroxime

IMAGING PROTOCOL

Tissue

Liver

FAST SPECT - 90 image dynamic series. Images taken every 11 seconds in rest and stress

Summed - Liver

PLS-FADS

Patient cardiac

99mTc-Teboroxime

Summed

LV

RV

Tissue

Liver

Summed - Liver

PLS-FADS

IMAGING PROTOCOL

PET - 30 image dynamic series Images taken over variable periods. Patient liver

18F-FDG

21 slices of summed image (right lobe of the liver)

Patient liver ¹⁸F-FDG

Summed

Tumor

Normal tissue

- •Is this non-uniqueness a problem?
- •Does that mean that the factor analysis used in the past 20 years is all wrong?
- Can the non-uniqueness be corrected?

Does that mean that the factor analysis with non-negativity

constraints used in the past 20 years is all wrong?

- •Is this non-uniqueness a problem?
- •Does that mean that the factor analysis used in the past 20 years is all wrong?
- Can the non-uniqueness be corrected?

- Part |
 - Why dangerous

Non-uniqueness

- Part II
 - Why useful

- Excellent for image segmentation and separation of the overlapped regions
- Very good for extraction of TACs (better than ROI measurements)
- Semi-automatic

"... and they are all this only if you know how to avoid their dangers"

taken from "My Life as a Nuclear Medicine Physicist"

Thank you